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Environment impacts adhesive strength 

RH = 78 % RH = 19 % Adhesive 

Joint 

No problems Joint failure 

What are the origins of this adhesion failure at a molecular level? 

 

Can we engineer strategies to overcome this?  



Why worry about adhesives? 

 More than 50,000 rivets to hold together 

 Reduce rivets by replacing with adhesive 

 Decrease maintenance costs! 

 Changing environmental conditions – how does this effect the adhesive strength? 



Interfaces and composite systems 

Highly filled composite polymer 

systems intrinsically high 

interfacial area 

Problem: disordered system with 

multiple length scales 

 

How to obtain fundamental 

understanding of moisture in these 

systems? 

Idealized interface = thin film 

filler 

binder 



Adhesion measurements using shaft loaded blister test 
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But this is a bulk measurement, how to understand mechanisms?  



Moisture influence: Bulk versus interface contributions 

Dry 

Moisture exposure 
Bulk swelling 

Interfacial water accumulation 

Bulk swelling 

Decreased cohesive strength 

Stress development in polymer 

Interfacial moisture 

Decreased contact area 

Stress development in polymer 

Which effect controls adhesive failure? 



Contrast control through isotopic substitution 

Neutron Reflectivity (NR) 

• Isotopic sensitivity (1H vs 2H) 

• Measure water distribution within 

film 

Water ‘looks’ like polymer 

(similar density) 

Water visible 

(Heavy water, D2O) 

X-ray Reflectivity (XR) 

• Measure thickness change due to 

moisture absorption 

• Mass density profile 

Use NR to directly observe water distribution in film 
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Quantifying moisture distribution:  X-ray and neutron reflectivity 



Examining water at polymer interface 
Thick polyimide on silicon wafer 
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Wu et al. Polymer Engineering and Science, 1995, 35, 1000.  

D2O Qc
2 = 3.21 x 10-4 Å-2 

Qc
2 = 1.57 x 10-4 Å-2 

Qc
2 = 1.06 x 10-4 Å-2 

Qc
2 ≅ 1.5 x 10-4 Å-2 

h = 2 mm 

h = 2 nm 

h= 2 mm 

No well defined interferences due to relative thicknesses 

 

Shift in critical edge and change in decay only differences 

 

Fit suggests D2O accumulates at interface 



Polyhydroxystryrene on silicon wafer 

-8

-6

-4

-2

0

lo
g

 R

0.200.150.100.05
Q (Å

-1
)

200

150

100

50

0

Q
c

2
 (

Å
-2

x
1
0

-6
 )

200150100500
Distance (Å)

Si 

Silicon oxide 

Polymer 

O
H

 

O
H

 

O
H

 

O
H

 

O
H

 

O
H

 

O
H

 

O
H

 

O
H

 

O
H

 

O
H

 

Qc
2 = 0.79 x 10-4 Å-2 

h = 80 nm 

Qc
2 = 1.6 x 10-4 Å-2 

h = 2 nm 

Qc
2 = 1.06 x 10-4 Å-2 

h= 2 mm 

Dry  

wet 

Minima in reflectivity not fit 

without excess at interface 

Improved sensitivity to 

interface by decreasing film 

thickness 

Vogt et al., Langmuir 2004, 20, 5285. 



Effect of polymer on interfacial concentration 
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ox ide/polym er interface di ffi cul t, but the qual i tati ve
presence of the interfacial w ater can be explained ratio-
nal l y . I n the case of si l i con oxide, the substrate is attractive
tow ard w ater. T he chem ical potential of the system can
be w ri tten as a sum mation of external potential s (surface)
and internal potentials (intr insic).

Far from the surface, the external potential contr ibution
is negl i gi ble. T his resul ts in bulk l i ke sw el l ing of the
polym er fi lm , as the total chem ical potential i s internal .
At the interface, addi tional contr i butions to the chem ical
potential from the substrate are im portant. T hese include
contr i butions from van der Waals and electrostatic
interactions, al though other forces such as hydration are
also im portant. T he attracti ve nature of si l i con ox ide for
w ater resul ts in a posi tive external contribution. T his leads
to an apparent increase in the chem ical potential near
the substrate, w hich should mani fest i tsel f as an increase
in w ater concentration. T he attracti ve force (tow ard the
w ater) is at a maximum near the interface and then decays
as the distance (D ) from the interface is increased. T he
distance dependence on the decay is dependent upon the
exact com bination of forces acting on the system (i .e., 1/D
for van der Waals forces, 1/D 2 for electrostatic forces, and
e- D for hydration forces).29 T he decay in chemical potential
as a resul t of these forces w i l l cause a w ater concentration
gradient to occur.

D ue to the di ffi cul t i es described prev iousl y , i t w ould be
useful to experim ental l y determ ine the excess w ater
concentration. Prev iousl y , Wu and co-w orkers used neu-
tron refl ecti v i ty to character i ze the excess w ater concen-
tration at a si l i con/pol y im ide interface.4 T he w ater dis-
tr i bution can be ascertained by isotopic substi tution,
nam ely , by using perdeuterated w ater. T he neutron
scatter ing length densi ty for D 2O (3.3 × 10 - 4 Å- 2) i s
signi fi cantl y higher than that for any other com ponent in
the sam ple, including the si l i con (1.06 × 10 - 4 Å- 2) and the
pol ymers (8.19 × 10 - 5 Å- 2 and 7.86 × 10- 5 Å- 2 for PB OCSt
and PH OSt, respecti vel y ). H ere, w e take a sim i lar

approach and di rectl y m easure the w ater distr i bution in
the PB OCSt and PH OSt fi lms.

T he neutron refl ecti v i ty profi l es and corresponding
scatter ing length densi ty profi l es are show n in Figure 5
for both PB OCSt and PH OSt. T he Q c

2 (scatter ing length
densi ty) profi l es read l i k e the X-ray data in Figures 1 and
3 except that Q c

2 now reflects the neutron scattering length
densi ty profi l es. For the N R experim ents, Q c

2 depends on
both the composi tion and the mass densi ty . U pon exposure
to D 2O, there are changes in the Q c

2 profi l e that w ere not
observed by XR due to the large scatter ing length densi ty
of D 2O. T he fi lm thick ness increases, as observed in the
XR m easurem ents, but the Q c

2 profi l e of the pol ym er fi lm s
can increase appreciabl y and there is an especial l y large
increase in Q c

2 near the si l i con/photoresist interface. For
the PB OCSt fi lm , the thick ness increases from 104 ( 3
Å to 120 ( 3 Å w i th an increase in Q c

2 from 8.19 × 10 - 5

Å- 2 to 8.55 × 10 - 5 Å- 2. T he PH OSt fi lm show s a more
pronounced change in the N R profi l e than that observed
for PB OCSt, w i th an expansion from 110 ( 3 Å to 124 (
3 Å and an increase in Q c

2 from 9.06 × 10- 5 Å- 2 to 1.50
× 10 - 4 Å- 2. N otice the larger increase (besides the
interfacial region) in Q c

2 upon D 2O exposure for PH OSt
in com parison toPB OCSt. T his is because the labi l e - OH
proton in PH OSt readi l y exchanges w i th deuterium from
D 2O, resul ting in a greater increase in Q c

2 than w hat simple
absorption, w i thout exchange, w ould predict. H ow ever,
this can be accounted for by assum ing al l of the hydroxy ls
in PH OSt are replaced w i th - OD .

T he increase in Q c
2 can be correlated to the D 2O

concentration in the fi lm . T he w ater concentration profi l e
can be determ ined from the scatter ing length densi ty
profi l e determ ined from the best fi t of the neutron
refl ecti v i ty profi l e.

w here Q c
2(x) i s the scatter ing length densi ty at a posi tion

x from the substrate, Q c
2
(poly) i s the scattering length densi ty

of the pure polym er, and Q c
2

(D 2O ) i s the scatter ing length
densi ty of pure D 2O. For the PH OSt sam ples, Q c

2
(pol y ) i s

taken as the scatter ing length densi ty for a com pletel y
(31) K inlock , A. J. Adhesion and Adhesi ves Scienceand T echnology;

Chapm an and H al l : L ondon, 1987.

Fi gu r e 5. Scatter ing l ength densi ty profi l es (Q c
2) for (a) PH OSt and (b) PB OCSt fi lm s before (dashed l ine) and after exposure (sol i d

l ine) to saturated D 2O vapor. T he reflecti v i ty profi l es w i th fi ts corresponding to the densi ty profi l es are show n in parts c and d
for PH OSt and PB OCSt, respecti vel y . T he refl ect i v i ty for the exposed fi lm s is offset by tw o decades for clar i ty .
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5288 L angm ui r , Vol . 20, N o. 13, 2004 Vogt et al .

This can be extended to 

multiple phase systems 

Can we further increase sensitivity? 

Vogt et al., Langmuir 2004, 20, 5285. 



Crosslinked polyacrylate on sputtered alumina 
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Qc
2 = 3.21 x 10-4 Å-2 

Qc
2 = 0.79 x 10-4 Å-2 

h = 1.5 mm 

Qc
2 = 2.4 x 10-4 Å-2 

h = 35 nm 

Qc
2 = 1.06 x 10-4 Å-2 

h= 2 mm 

Interference fringes from thin alumina 

 

Shift due to contrast change from  

D2O sorption 

 

Improved sensitivity to interface 

Vogt et al., J. Appl. Phys. 2005, 97, 114509 



Moisture accumulation for polyacrylate on alumina 
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Vary cure condition to change H2O solubility 
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Bulk solubility does not influence moisture content at alumina / polymer interface 
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Vogt et al., J. Appl. Phys. 2005, 97, 114509 



Design of system to maximize sensitivity 
★ Relatively thin polymer coating (< 150 nm) ★ High contrast oxide layer 

(10-30 nm) ★ D2O as probe ★ 
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h = 85 nm 
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2 = 2.4 x 10-4 Å-2 

h = 35 nm 

Qc
2 = 1.06 x 10-4 Å-2 

h= 2 mm 

Multiple interferences yields 

added sensitivity to buried 

interface contrast 

Vogt et al., Langmuir 2005, 21, 2460 



Water accumulates at interface 

• Does this accumulation directly impact 

adhesion? 

• Can this accumulation be controlled? 

• What are critical factors? 



Critical relative humidity 
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Qc
2 = 0.79 x 10-4 Å-2 

h = 85 nm 

Qc
2 = 1.6 x 10-4 Å-2 

h = 15 nm 

Qc
2 = 1.06 x 10-4 Å-2 

h= 2 mm 

Cohesive failure 

Adhesive failure 

Is the interface to blame for 

failure at high humidity? 

Tan et al., Langmuir 2008, 24, 9189 



Impact of  humidity on interfacial properties 

Increasing partial 

pressure 

What’s driving the failure? 
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Comparison of interface and bulk 

Critical humidity 

No discontinuity at interface 

So is moisture at interface important? 
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Correlating interfacial moisture and adhesion for PMMA 
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Interplay between dry adhesion and moisture accumulation 

Intermediate surface energy for best wet adhesion 

 

Interfacial water matters! 

O’Brien et al., Adv. Eng. Mater. 2006, 8, 114 



Change in the interface at the critical 

humidity 
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Interfacial moisture broadens at the critical humidity 

Is this responsible for the failure? 

Tan et al., Langmuir 2008, 24, 9189 



How could this change in the profile impact adhesion? 

Only the average in plane distribution of water is determined from neutron reflectivity 

Distribution is not uniform! 

Dry surface 

Ultrathin film (15 nm) 

Water drop on 

surface 

Hydrophobic interface 

(minimal adhesion loss) 

Hydrophilic interface 

(catastrophic adhesion loss) 



Proposed model for critical relative humidity 

Increasing humidity 

Critical humidity 

1. Initial accumulation at the interface only mildly perturbs the contact area – adhesive energy still 

greater than cohesive energy 

2. This grows, but does not significantly stress the interface 

3. When the bulk concentration increases significantly at the critical humidity, it causes shear stress 

accumulation near the interface due to the decreased contact area 

4. This stress forces the additional water accumulating at the interface to be pushed into the film  

5. This additional water at the interface causes a large stress normal to the film surface leading to 

adhesive failure 



How to test model? 
• Stress accumulation should be important 

 

 

Water causes normal stress in adhesive? 

Ef= 3.15 ± 0.07 GPa Ef=1.91 ± 0.1 GPa Ef=1.20 ± 0.06 

GPa 

PMMA PEMA PnPMA PnBMA 

Ef < 100  MPa 

Increasing chain length 

Tg = 105 ºC Tg = 65 ºC Tg = 36 ºC Tg = 15 ºC 

n=0 

Model: poly(n-alkyl methacrylate) 

n=1 n=2 n=3 

Torres et al., ACS Nano 2009, 3, 2677 



Impact on changing the model adhesive  
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Low modulus PnBMA does not exhibit critical relative humidity  



What about moisture uptake? 
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Is the interface impacted? 
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Does low modulus lead to decrease in 

moisture?  
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Low modulus appears to lead to suppression of moisture accumulation at interface 

(rubbery polymers) 

Karul et al., Polymer 2009, 50, 3234 



Excess Swelling 
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Vogt et al., Langmuir 2005, 21, 2460 



Thickness dependent swelling 

Model corresponds well with thickness dependent swelling 
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Is there always an excess at the interface? 
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Vogt et al., Polymer 2005, 46, 1635 



What about aqueous solutions? 

We obtain similar information about the interfaces immersed in D2O 
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• Hydrophilic interface relative to bulk polymer  

 interfacial excess & enhanced thin film swelling 

• Hydrophobic interface relative to bulk polymer  

 interfacial depletion & suppressed thin film swelling 
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Vogt et al., J. Microlith. Microfab. Microsys. 2005, 4, 013003 



What about salts? 

Epoxy on oxidized aluminium  

Addition of salt increases fracture energy for failure 

 

Does this correlate with the interfacial water content? 



Developing system with high sensitivity 

Epoxy 

Aluminum 
Silicon oxide 

Silicon 

Note that SLD for aluminum is very close to silicon 

Qc
2 = 0.59 x 10-4 Å-2 h = 80 nm 

Qc
2 = 1.68 x 10-4 Å-2 h = 25 nm 

Qc
2 = 1.06 x 10-4 Å-2 h= 2 mm 

Qc
2 = 0.95 x 10-4 Å-2 h= 18 nm 



Impact of salt on water distribution 
Comparison of profiles with saturated NaCl and D2O Bulk behavior 

Sharper interface between epoxy and aluminum oxide in case of salt 

 

Less bulk swelling in case of salt as well 

Is this due to salt incorporation into the film? 

Silicon 

Silicon oxide 
Aluminum 

Epoxy 

D2O 



Examination of NaCl in film 

Silicon 

Silicon oxide 
Aluminum 

Epoxy 

D2O + H2O 

Contrast match  

(CM) 

CM + NaCl 

In situ Ex situ 

No evidence of salt accumulation within polymer  

Qc
2 = 1.04 x 10-4 Å-2 for NaCl 

(Wang and Schaefer, Langmuir 2010, 26, 234) 



Can we directly visualize salt ion distribution? 

Prabhu et al., Langmuir 2005, 21, 6647 
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Direct measurement of Developer Profile 

PNBHFA Film

ContrastContrast--Matched SolutionMatched Solution

d12-TMAH

PNBHFA Film

ContrastContrast--Matched SolutionMatched Solution

PNBHFA Film

ContrastContrast--Matched SolutionMatched Solution

PNBHFA Film

ContrastContrast--Matched SolutionMatched Solution

d12-TMAHd12-TMAH

PNBHFA Film

ContrastContrast--Matched SolutionMatched Solution

PNBHFA Film

ContrastContrast--Matched SolutionMatched Solution

• Contrast match solvent to the dry film (not much reflectivity) 

• d12-TMA uptake increases contrast (more reflectivity) 

• Base uptake observed 

H2O (-0.3) 

D2O (3.3) 

Air (0) 

PHOSt (0.8) 

PNBHFA (1.0) 
Si (1.1) 

SiO2 (1.9) 

d12-TMAH (4.2) 
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d12-TMA profile within ultrathin PNBHFA 

• Direct measurement of base profile within thin solid polyelectrolyte films 

• TMA+ concentration within film enhanced with increasing base concentration 

• Non-uniform profile within the film; reduced near the substrate 

• Diffuse counterion profile at free surface 

Prabhu et al., Langmuir 2005, 21, 6647 



Combining contrasts 

Silicon 

Silicon oxide 

PNBHFA 

D2O 

Silicon 

Silicon oxide 

PNBHFA 

CM 

d-TMAH h-TMAH 

Polymer is visible 
Ions are visible 

Can measure excess ion concentration that extends into 

solution from charging of polymer film  

Prabhu et al., Langmuir 2005, 21, 6647 



Conclusions 

• Water accumulates at polymer/substrate interface 

• Concentration at interface  

• Independent of bulk solubility 

• Dependent on substrate chemistry 

• Water accumulation correlates with adhesion loss 

• Mechanism for critical relative humidity appears to be 

stress concentration due to moisture accumulation 

• Salts can increase or decrease water uptake in films 

• Contrast match provides facile route to visualize ion 

distribution 
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